日本一区久久久,亚洲综合精品一区二区三区,国产色系视频在线观看 http://www.szstea.com 專業的天線及天線配件制造商 Sat, 16 Sep 2023 03:39:51 +0000 zh-CN hourly 1 https://wordpress.org/?v=4.7.29 關于超高性能微波天線饋源系統的設計與分析 http://www.szstea.com/baike/2796/ http://www.szstea.com/baike/2796/#respond Fri, 05 Jul 2019 02:43:22 +0000 http://www.szstea.com/?p=2796 本文介紹了用于微波接力天線饋源中的C波段超高性能饋源系統的設計方法,利用高頻結構仿真軟件對其進行了優化設計。對一些重要的和不易調整的尺寸用加偏差的方法來確定加工精度。計算結果與實測結果吻合的較好,在4.4~5GHz的頻段中,整個饋源系統的駐波優于1.05,交叉極化鑒別率優于-40dB。

The post 關于超高性能微波天線饋源系統的設計與分析 appeared first on 東莞市皇捷通訊科技有限公司.

]]>
.view{padding:0;word-wrap:break-word;cursor:text;height:90%;}body{margin:8px;font-family:sans-serif;font-size:16px;}p{margin:5px 0;}

本文介紹了用于微波接力天線饋源中的C波段超高性能饋源系統的設計方法,利用高頻結構仿真軟件對其進行了優化設計。對一些重要的和不易調整的尺寸用加偏差的方法來確定加工精度。計算結果與實測結果吻合的較好,在4.4~5GHz的頻段中,整個饋源系統的駐波優于1.05,交叉極化鑒別率優于-40dB。

關鍵詞:超高性能饋源系統 高頻結構仿真軟件

一、 概 述

近幾年來,我國通信事業的飛速發展,微波接力通信天線也不斷地發展和完善,衛星通信系統的傳送網功能主要通過光纖,地面微波,空中衛星等通信方式來完成。從微波傳送系統所采用的新技術及傳送容量的角度來看,新一代的同步數字系列SDH微波通信系統替代了傳統意義上的PDH微波通信。為適應正在興起的SDH微波通信中頻率復用的發展,我們需要研制超高性能的微波天線。它應具有很高的前后比(F/D),很高的交叉極化鑒別率(XPD)和極低的電壓駐波比(VSWR)。因此,超高性能微波天線系統具有低的電壓駐波比(VSWR優于1.06或反射損耗大于30.7dB)和高的交叉極化鑒別率(大于38dB)。

二、 系統組成

超高性能微波天線的饋源系統是由喇叭,正交器,扭波導,彎波導和波導饋線組成。其中喇叭和正交器是關鍵部件。

1.喇叭

適合超高性能微波天線的饋源的喇叭有多種[1][2]。本饋源采用帶有三個扼流槽的平面波紋喇叭,這種平面波紋喇叭具有旋轉對稱的方向圖,低的副瓣,低的交叉極化和穩定的相位中心。喇叭的結構如圖 1所示。它是由一個圓波導和三個同心圓環構成。為了改善喇叭的駐波特性,我們在喇叭口附近對稱地放置調配塊。為了防止異物等進入喇叭,需對喇叭口進行封閉。通常在喇叭口上加介質薄膜,一般介質薄膜均會使喇叭的駐波變壞,我們利用高頻仿真軟件對介質的位置與厚度進行調整,使之具有改善駐波的特性。優化后的喇叭駐波優于1.05。

t49-1.gif (4229 bytes)

圖 1 喇叭結構

2.正交器

在現代天饋系統中,頻率復用技術是利用頻率資源最經濟的方法之一,可達到擴大通信容量的目的。正交極化頻率復用技術是用雙極化天線來實現的,即在同一頻率上,利用極化正交特性傳輸兩路獨立的信號。正交極化頻率復用技術有兩種,即雙線極化和雙圓極化[3]。正交極化的合成和分離是在饋電系統中實現的。雙線極化頻率復用是用正交模耦合器(OMT)也稱極化分離器(簡稱正交器)完成的。

正交器是常用的微波元件,但介紹其設計方法的文獻較少[4]。普通的正交器(如圖 2所示)雖然只表現為三個物理端口,但就電氣上來說是四端口器件。這是由于公共端口中有兩個正交的主模(圓波導中的TE11/TE*11模或方波導的TE10/TE01模)與其他兩個端口中各自的基模(矩形波導的TE10模或同軸線中的TEM模)匹配。

正交器的作用是分離公共端口中兩個正交主模的獨立信號并將它們傳給單一信號端口的基模,使所有電端口匹配且在兩個獨立信號之間有高的交叉極化鑒別力。因此,理想正交器的散射矩陣為

gs5001.gif (1483 bytes)

這里端口1和2代表位于物理公共端口的主模,端口3和4是基模接口,例如,分別在端口1與端口3和端口2與端口4之間提供直接連接。其相移滯后分別為φ1和φ2。

正交器的形式有多種,其性能略有差異。一般主波導的形式有圓波導和方波導,在寬頻帶應用時也可采用四脊波導。與分支波導(也稱側臂)耦合的耦合孔的位置在錐縮(漸變或階梯)部分,也有用膜片或隔離柵短路耦合的。本文所介紹的正交器是在較窄的工作頻帶(10%~20%)內滿足高性能和低成本的要求。對高性能而言是要求有較小的反射損耗(VSWR)和高隔離(端口隔離和極化隔離);低成本則要求結構簡單,加工方便。

為了保證正交器的性能,其最低工作頻率應滿足fmin>1.1fc。這樣圓波導正交器的最大工作帶寬約為17%,方波導正交器的最大工作帶寬約為25%。在這樣的帶寬內正交器隔離性能僅受結構尺寸和加工對稱性的影響。如果大于最高工作頻率,由于高次模的影響,正交器的隔離性能將變差。

正交器的設計的準則是抑制高次模的產生,簡化結構,保證結構的對稱性,用較少的匹配元件實現各個端口的匹配。

正交器設計的關鍵是方形或圓形波導分支耦合器的結構及兩個基模端口的匹配部分。我們所設計的正交器采用如圖 2所示的形式。整個設計過程中首先確定方波導的尺寸,然后設計直通口的方矩波導階梯過渡。最后確定側臂耦合孔位置。選取耦合孔的大小與位置應以盡可能減小對直臂的影響又能很好地耦合極化信號為宜。由于側臂耦合結構變量較多,對性能影響很大,優化側臂尺寸是十分必要的。

t50-1.gif (1580 bytes)

圖 2 C波段正交器

對微波元件來說,通過求解Maxwell方程這一古典的方法來獲得其特性是困難的。由于高速度大容量計算機的出現。促進了各種數值分析方法的發展。在電磁場問題的數值計算領域出現了多種方法,如有限時域差分法(FDTD),模匹配法(MMT),傳輸線矩陣法(TLM)和有限元法(FEM)等。這些方法對處理各類電磁場問題是部分有效的,但都有所限制。相對而言,有限元法應用比較成熟,可以處理較多類型的電磁場問題,當然對計算機資源的要求也更高。基于有限元法的高頻結構仿真軟件HPHFSS為解決微波元件的分析方法提供了一種有效的手段。

利用軟件優化設計過程實際上是一個加工調試的仿真過程,可以把過去用實驗方法確定的尺寸用計算機分析得到。側臂優化的計算量大,由于側臂尺寸對直通口性能影響較小而且側臂匹配的難度較大,對直通口的匹配影響可以選擇特定的元件來達到減小的目的。優化側臂的模型可利用其對稱性來減少計算量,彎波導優化后的駐波優于1.02。扭波導優化后的駐波優于1.04。

微波元件性能的穩定性是設計的另一個重要目標之一。通常情況下,對于非諧振結構微波元件來說,尺寸對性能影響是平緩的(非激烈變化的),利用微擾結構尺寸的方法可達到檢驗計算結果,確定制造公差的目的。特別是對性能影響很大的尺寸公差的確定是很有必要的,可為合理分配公差,降低制造成本提供科學依據。

3.饋源系統的優化設計方法

饋源系統的性能優化是一個十分復雜的問題,各部分的尺寸變化都會影響性能。由于受計算機資源的限制,對整個饋源系統進行優化設計是困難的,采用對各微波元件進行優化設計后,再對各微波元件的連接關系(接口位置)進行優選,可以得到較好的系統性能。例如,喇叭的最大的回波損耗為-34dB,正交器的最大回波損耗為-32dB,通過優選喇叭與正交器的連接尺寸后,正交器加喇叭合成后最大回波損耗為-32.5dB。

三、 計算與實測性能

喇叭優化后的VSWR和方向圖結果如圖 3所示,方波導正交器優化后的VSWR結果如圖 4所示,對正交器中的主要結構尺寸加微擾(尺寸加公差)后計算的VSWR如圖 5所示。從仿真結果來看,正交器中的主要結構尺寸的公差要求在+0.2%~+0.4%是適當的。整個饋源系統的VSWR結果如圖 6所示,它的交叉極化鑒別率如圖 7所示。

t51-1.gif (7575 bytes)

圖 3 喇叭優化后的VSWR和方向圖

t52-1.gif (7453 bytes)

圖 4 方波導正交器優化后的VSWR

t52-2.gif (8889 bytes)

圖 5 正交器中主要結構尺寸加微擾后的VSWR

t52-3.gif (10639 bytes)

圖 6 饋源系統的VSWR

t52-4.gif (5552 bytes)

圖 7 饋源系統的交叉極化鑒別率

四、 結 論

本文介紹了C波段超高性能微波天線的饋源系統的設計方法。給出了計算和實測結果,提出了利用高頻結構仿真軟件確定微波元件制造公差的方法。整個系統的駐波優于1.05,交叉極化隔離優于40dB。該饋源系統已很好地應用于3.2m的微波中繼天線。

皇捷通訊的gsm天線、wifi天線、uhf天線、vhf天線、電視天線、電子連接器生產線引進日本、中國臺灣高端生產設備,保證產品具有穩定、優良的品質。公司生產設備包括注塑成型設備、五金沖壓設備、自動組裝設備、模具制造設備、RF剝線設備及品質檢驗設備等。我們擁有高端的技術研發和制造能力,可以根據客戶需求定制產品,并調整和提高生產效率。保證穩定、精確的交貨期和快速的樣品確認。

The post 關于超高性能微波天線饋源系統的設計與分析 appeared first on 東莞市皇捷通訊科技有限公司.

]]>
http://www.szstea.com/baike/2796/feed/ 0
微波天線暗室的技術性能|暗室的靜區 http://www.szstea.com/baike/2494/ http://www.szstea.com/baike/2494/#respond Fri, 05 Oct 2018 09:59:27 +0000 http://www.szstea.com/?p=2494 天線暗室的功能: CTIA認證,包括移動臺的TRP和TIS測試, 移動臺天線測試,包括天線場型、增益、方向圖測 […]

The post 微波天線暗室的技術性能|暗室的靜區 appeared first on 東莞市皇捷通訊科技有限公司.

]]>
天線暗室的功能:

CTIA認證,包括移動臺的TRP和TIS測試, 移動臺天線測試,包括天線場型、增益、方向圖測試, 輻射雜散測試, 輻射抗擾度測試, RF性能 天線特性,頻率到2.45GHz滿足歐洲電信測試標準ETSI 300 328。

天線暗室的技術性能:

可滿足800MHz-18GHz頻率范圍內的天線測試。

CTIA的TRP和TIS測試指標要求

CTIA目前公布的《CTIA認證程序:手機空中特性測試計劃,輻射射頻和接收機性能》,主要考慮了手機天線方向圖對手機各種指標的影響。

TRP指的是總輻射功率,是指手機在立體全方向上發射機對外輻射功率的平均值,相對于峰值有效輻射功率(ERP)和傳導輻射發射功率。

TIS 指的是總全向靈敏度,是指手機在立體全方向上接收機的接收靈敏度平均值,相對于傳導接收機靈敏度。TIS即考慮了天線的匹配因素,也考慮了在三維空間的接收機的接收性能,因此可以更全面地衡量手機的接收機的接受能力, 通常來講手機的TRP值越大越好,TIS值越小越好,相對傳統手機射頻性能,測試手機的TRP和TIS非常必要。

天線暗室為桐邑公司的優勢,在過去幾年里已為多家知名單位建造天線暗室,因此以桐邑公司的經驗和實力完全可以滿足貴單位對于暗室方面的正常要求。

靜區:

靜區尺寸: 1GHz≥60cm

靜區反射電平: 800MHz~1GHz,≤-35dB、 1GHz~3GHz,≤-40dB、 3GHz~6GHz≤-45dB

紋波測試:

靜區紋波測試結果小于±0.8dB。

多徑損耗

在800MHz-6GHz范圍內,±0.25dB

天線暗室的建設:

屏蔽室安裝完工之后,四面墻、天花板及地面皆貼Pu-Absorber。即構成天線暗室。桐邑公司施工工藝先進,粘貼吸波材料使用叉型粘扣帶和魔鬼氈,保證不脫落。在角落等細部處理上采用切成45度角單斜邊及雙斜邊的角錐吸波體(一般公司角落都是貼平的吸波體)可以保證整間貼的很密。因此吸波效果會很好,暗室的性能也能得到保證,并且暗室整間搬遷、改造十分方便

天線暗室的基本設施:

1. 屏蔽屏蔽殼體一間:采用美國拼裝式工藝建造,保證屏蔽效能的同時,也能保證屏蔽室的堅固耐用,并可以整體搬遷或擴建。

2. 屏蔽門:全開尺寸0.9m×2.1m,電動、手動或氣動開啟。

3. 波導通風口:2個,尺寸300mm×300mm。

4. 電氣系統:照明燈具,插座。

5. 暗室內部四面墻、天花板及地面貼滿微波吸波材料,自屏蔽門至天線架及轉臺處成ㄇ字型鋪設走道型吸波體。吸波材料的阻燃性能滿足NRL 8093-94 、DIN 4102 Class B-2標準。

6. 濾波器:符合MIL-STD-220A標準,同時滿足UL1283標準,在10MHz-10GHz頻率范圍內,插入損失100dB。

220V/50Hz/單相/2×30A 一臺

7. 接頭及接頭板:有N型、SMA型、IEEE488型接口。

8. CCTV:影像及控制需以光纖傳輸,配彩色PAL機型。另需攝像機控制器及彩色顯示器各一套。

The post 微波天線暗室的技術性能|暗室的靜區 appeared first on 東莞市皇捷通訊科技有限公司.

]]>
http://www.szstea.com/baike/2494/feed/ 0
主站蜘蛛池模板: 襄樊市| 敦煌市| 集贤县| 阳西县| 治县。| 南汇区| 安国市| 新民市| 托里县| 仙桃市| 永善县| 化州市| 日土县| 松原市| 米易县| 东辽县| 威海市| 长宁县| 东兴市| 临邑县| 深水埗区| 老河口市| 来宾市| 隆子县| 桂阳县| 湘乡市| 保山市| 林西县| 商河县| 海原县| 宝丰县| 泗阳县| 岳阳县| 张家界市| 高阳县| 正镶白旗| 克山县| 古浪县| 万年县| 来凤县| 香格里拉县|