分形理論在天線設計中的應用

/
分形天線的自相似性能減小分形天線元的整體寬度,同時和歐幾里德幾何天線元保持同樣的性能,因為各個天線元具有同樣的諧振頻率和相同的輻射方向圖。分形元能夠改善運用歐氏幾何天線元的線性天線陣列的設計,運用分形元來改善和提高天線陣列的性能,這里討論兩種方法:

分形天線的特性分析

/
由于分形幾何兩個獨特的特征:自相似性(self-similarity)(或自仿射性self-affinity)和空間填充性(space-filling),結合天線的特征,使得分形幾何在天線工程領域中的應用有了突破性的發展。使天線在尺寸大小和頻帶寬窄以及多頻帶等方面的性能與傳統天線相比有了極大的改善。

分形天線的常見種類有哪些?

/
分形幾何天線的形成主要是通過迭代的方式產生的,這就使得分形天線具有自相似性。如正三角形四等分成四個小三角形,挖去中間的一個,把剩下的三個小三角形四等分挖去中間的一個,如此無限的進行下去,面積將趨于零、邊長增加、由無窮多線段組成的Sierpinski Gasket,如圖2所示,其分維數為ln3/ln2。

分形天線簡介

/
隨著無線通信技術的發展和移動通信終端設備的普及,特別是近年來人們對小型化、多頻帶、集成化天線的迫切需求,使天線技術得到了充分的發展。但是,傳統的天線在幾何形狀上基本上都是基于歐幾里德幾何的設計。雖然,隨著天線技術的不斷發展出現了微帶天線,具有低剖面、重量輕、成本低,可與各種載體共形,適合印刷電路板技術批量生產、易于實現圓極化、雙極化、雙頻段工作等優點,但其致命的缺點是窄帶性,從而限制了它的廣泛應用。因此,迫切需要運用新的理論和方法,探索現代天線的設計,解決傳統的天線設計中出現的問題和矛盾。研究發現,將分形幾何應用到天線工程中,可設計出尺寸和頻帶指標更好的分形天線。

RFID技術原理及其射頻天線設計

/
近年來人們開始開發應用非接觸式IC 卡來逐步替代接觸式IC 卡,其中射頻識別( RFID , radio frequency identification) 卡就是一種典型的非接觸式IC卡,然而,RFID 在不同的應用環境中需要采用不同天線通訊技術來實現數據交換的.

超材料概述

/
超材料(Metamaterial)是指自然材料通過人工手段加工設計后,具有自然材料所不具備的超常物理性質的人工復合材料或結構。   通常,任意一種媒質的電磁特性可以通過介電常數ε和磁導率μ兩個宏觀物理量來描述。自由空間的介電常數和磁導率分別用ε0和μ0表示(ε0和μ0均大于零),而對一般物質:ε=ε0εr,μ=μ0μr,其中εr表示相對介電常數,μr表示相對磁導率,媒質的折射率則被定義為

適應移動終端的可重構天線的設計

/
目前,各種通信系統發展的重要方向之一是大容量、多功能、超寬帶。通過提高系統容量、增加系統功能、擴展系統帶寬,一方面可以滿足日益膨脹的實際需求,另一方面也可以降低系統成本。而天線作為各種無線通信系統的前端,其性能對于通信系統整體功能具有重要的影響,因此也相應的對其提出了諸如多頻、寬帶、小型化等要求。

一種適用于WLAN系統的印刷偶極子天線

/
  無線局域網是利用無線技術實現接入以太網的技術,是計算機網絡與無線通信技術相結合的產物。與有線網絡相比,無線局域網的主要優勢是可移動,無需線纜即可接入網絡。無線局域網也存在信號干擾等缺點。

新型全向吸頂天線主要技術通用技術規范

/
在 3G 試驗網建設初期,研究人員就發現:3G 信號衰減快、穿透損耗大、繞射能力差,在室內分布系統中,2G、3G 信號覆蓋不能同步,3G 信號覆蓋范圍小、盲點和弱區多。這些問題是3G 信號頻率高所致,通常被認為是不可逾越的技術障礙。要獲得良好的3G 室內信號,唯有增加天線密度。所以,對3G 室內分布系統,業界普遍認同“小功率、多天線”的設計原則。然而,這一原則雖然解決了3G 信號覆蓋問題,卻帶來了建設投資成倍增加和大規模的2G 室內分布系統改造,同時,還導致更嚴重的2G 信號泄漏。

介紹新型全向吸頂天線主要技術特性

/
一、概述   早在 3G 試驗網建設初期,研究人員就發現:3G 信號衰減快、穿透損耗大、繞射能力差,在室內分布系統中,2G、3G 信號覆蓋不能同步,3G 信號覆蓋范圍小、盲點和弱區多。這些問題是3G 信號頻率高所致,通常被認為是不可逾越的技術障礙。要獲得良好的3G 室內信號,唯有增加天線密度。所以,對3G 室內分布系統,業界普遍認同“小功率、多天線”的設計原則。然而,這一原則雖然解決了3G 信號覆蓋問題,卻帶來了建設投資成倍增加和大規模的2G 室內分布系統改造,同時,還導致更嚴重的2G 信號泄漏。   通過長期觀察、測試和研究,我們發現傳統全向吸頂天線存在一些技術缺陷,如高頻信號向天線正下方聚集,信號分布不均勻、不穩定等。高頻信號聚集效應是導致3G 等高頻信號快速衰減和覆蓋半徑小的真正技術原因。經過對寬帶天線的技術研究、反復實驗和不斷改進,我們研發出了寬帶、高效、節能和環保的新型全向吸頂天線